
differ from those presented in [i, 2]; this is associated with both the more precise defini- 
tion of data on the limiting dynamic compression diagrams of the soils under consideration, 
and allowance for the peculiarities of their cyclic loading. 
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METHOD OF ELASTIC CHARACTERISTIC VARIATION IN THE PROBLEM 

OF A LIMITING LOAD 

R. A. Kayumov UDC 539.214:539.374 

One of the questions of ideal plasticity theory is that of finding limiting loads with 
which a structure ceases to resist the action of external forces. Two-way evaluation of 
them may be obtained with the help of static and kinematic theorems [i]. Given below is 
a procedure based on these theorems making it possible to approach successively the upper 
and lower boundaries of the limiting load. 

Let the condition for yielding have the form (the Mises-Hill criterion) 

I = o ~ A o  = 1, ( 1 )  

where o is a vector-column composed of stress tensor components; A is a matrix of plastic 
flow characteristics; symbol T means the operation of transposing. 

Equations for equilibrium within the body and at its boundary are written in operator 

form 

Do(x)  = q(x), q(x) = qo(x)t. (2)  

Here D i s  a ma t r ix  of  l i n e a r  d i f f e r e n t i a l  o p e r a t o r s ;  q0(x)  i s  normal ized  e x t e r n a l  load ;  
t is loading parameter; x is radius-vector for a point of the body. 

Coefficient t, is sought on reaching which the structure loses its supporting capacity. 

Lower Estimate. The solution of Eq. (2) is presented in the following symbolic form: 
o = o0t, a 0 = D-~q0 �9 We calculate function I: I = I0 t2, I 0 = o0TAo0 . Let with t = t_ 

stress o be reached for the flow surface of any point of the body. Then 

(I0)m~ t t  = t .  

Since equilibrium equations are satisfied and stresses do not go beyond flow surface 
(i), then according to the static theorem 

t , ~ t _ =  ~ / V ~ m ~ x  �9 (3) 
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As can be seen from (3), for the best estimate it is necessary to find the stress field 
minimizing (I0)ma x (see also [2, 3]). Thus it is necessary to find 

X 

I ,  = rain [(Io)max]. (4)  
a o t x j 

The main idea of the work [4] is that instead of field a 0 two fields are found, i.e., 
strain field e = Lu (L is linear differential operator, u is displacement vector) and the 
matrix of elastic constants E(x) of some theoretical Hooke's law o 0 = Ee. The possibility 
of varying field E appears, e.g., to find it in the form 

E = E0(x)~(x) 

Here E 0 is an unchanged symmetrical matrix; X(x) is a variable scalar function of the radius- 
vector of a point of the body found from the condition of a minimum for the value (I0)ma x. 

X 

A feature of l(x) is that it is sufficient to determine it with an accuracy up to a 
constant factor. In fact, the solution of Eq. (2) may be written as E = (DEoA) -2 q0- Then 

I o = %~[Eo(DEo%)-Iqo]TA [Eo(DEo%)-lqo]. 

The assertion stated above follows from this expression in view of the linearity of D. 

We present the calculation operator (I0)ma x in the form [5] 
X 

([o)~a~ = lim [(mess ~Q)-l/P (! l~ d~) lip ] 
~ (5) 

(mess (fl) is a measure of body volume). 

Reduction of the Control Problem to a Variational Problem. Let us consider the iso- 
perimetric problem of variational reckoning of the minimization of functional F(u, ~), where 

~ r 

on condition that 

(Io)max = [~2 (Eog) T A (Eog)]max = c 2 
x x ( 7 )  

(Q0 and P0 are normalized vectors of external forces; P is the surface of the body at which 
P0 is prescribed; u(x) is a kinematically possible displacement field; we vary field ~ and 
u; c = const). By substituting (5) in (7) and raising to power p we obtain instead of (7) 

l im y I~/e 2v d~ = messY. (8)  

Use of the Lagrangian multiple method leads to the problem of finding the stationary 
point for functional 

= F + ~ lira ~ IUW de 

Variation of (9) g i v e s  ( f u r t h e r m o r e  Ioo = eTEoAEo ~) 

Whence 

i [a'Eos + I~ l irn (2p12V-'Z~o/e2")]6~, d~ + ~ 6a" [2~,Eos + 

+ ~ l im (2p2~*'PlPoo'EoAEos/c~'P)]da--jr Q~o6udfl-- S P~ dF= O. 

% = lira [-- 8"EoJ~oVC=P/(2p~)] I/(2p-I). 
~->oa 

(9) 

(10) 

It is possible to select p so that % is greater than zero: 

(3 + 2n)/4, l* > 0, 
P =  ( n + i ) / 2 ,  ~ < 0  (n-----t,2 . . . .  ). 
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Since energy ETE0g is limited almost everywhere, then from (i0) 

= Ig '/~ lira ( - -  c=P~) :/(2p-:). 

It is possible to select c 2 so that (-c2p~)-:/(2P: :) = i. Then 

= i/Vloo, (11) 

In order to show that equilibrium equations emerge from the variational problem in 
question, it is sufficient to return to (6) by substituting (Ii): 

Variation of F is written as 

6F=S2e 'EoI~: / 'Sed~_~O:Sud~_ye 'Eoee 'EoAEo8el~3/ 'd~--  S P:Su dF. (12) 
Q ~ Q r 

In view of symmetry of the expression E0eETEoAE0, ETE0eETEoAE0~e = ~TEoAEoEeTE06 ~ = 

I00eTEo6e. From (12) taking account of the minimum of F 

Q r ~ fl r 

Condition (13) conforms with the variational Lagrangian equation which is equiva- 
lent to an equilibrium equation. Furthermore, in view of the reciprocity principle prob- 
lem (6), (Y) is equivalent to the problem of minimizing (10)ma x on the condition of constant 

X 

F with Euler equations which will also be equilibrium equations and condition (ii). Conse- 
quently, problem (6), (7) is equivalent to control problem (2), (4), and the optimum condi- 
tion will be equality (ii). 

Upper Estimate. By determining the displacement field from the equilibrium equation 
using elastic characteristics E = IE 0 it is possible to find the upper boundary of the lim- 
iting load. According to the well-known theorem [i] 

t, <~ t+ = W/U. 

Here  W i s  t h e  c a r d i n a l  number o f  p l a s t i c  d e f o r m a t i o n s ;  U i s  t h e  c a r d i n a l  number o f  e x t e r n a l  
unit forces. As a kinematically possible velocity field 6(x) it is possible to take field 
u(x). Then it is easy to calculate W and U. 

The procedure for approaching the boundaries of the limiting load is built up as follows. 
In order to find the initial approximation we take 1 (I) = I. After solving Eq. (13) we 
find o0(:) , (10)max (1), W (I), U (I) and make an estimate of the limiting load coefficient: 

X 

(14) 

If this estimate is not satisfactory, then in order to find the next estimate we take 

I(2)= [(I00(1))] -I/2, solveEq. (13) again, make estimate (14), etc. 

Illustrative Example. The procedure for finding the upper boundary is demonstrated 
on the problem of estimating from below the supporting capacity of an element of a bent 
plate with thickness h. According to the Kirchhoff-Love hypothesis, 

= Eez ,  ~ = {• • 2xn}, o" = {o**, o2z, on}, (15) 

where E i s  a vec to r  of curva ture  independent of coord ina te  z normal to  the c e n t r a l  su r face  
of the plate; E is matrix of cylindrical stiffnesses. For the determination bending moments 
M 11, M 22, M 12 are presented in the form 

hi2 
M = ~ (rzdz, Mr = {Mn,  M~2, M12}. (16)  

--h/2 
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Let M = Mot be found from the equilibrium equation for the plate. Expression (16) may be 
interpreted as the integral equation of equilibrium. In the first step with A (~)~ I, 
E = E 0 from (15) and (16) 

~(~) = E~Mot2lh% 

From (ii) and (15) it follows that ~(2) = sign (z)/z. Substitution of E = X(2)E 0 in (15), 

and then in equilibrium, Eq. (16) gives 

a~ ~) = 4/I/0 sign (z)/h'. 

A normal two-layer model of the plate was obtained. Since I 0 = const over the whole height, 
then 

t_ = h'/(4 V"MdIM~), 

which is equivalent to the usual yielding condition used in ideal plastic plate theory. 

Use of the Analytical Solutions. The procedure suggested makes it possible to use 
effectively analytical unilateral estimates (normally it is easy to obtain equations for 

the upper boundary). Then immediately it is possible to assume ~(i) = 1 iv~-~00, where I00 
is calculated from the known solution. 

As an example we consider the problem of the limiting load for a beam with length l 
with one fixed end and one hinged end (Fig. i; m and R are reactions). 

The method of plastic joints gives [i]: 

= qo~ = ti,6 Ms, Ms = 2%Sx/l s (17) 

(o s is yield point with axial tension, S x is static moment). 

Plastic hinges arise at the fixing (z = 0) and at distance z = ~l = 0.586Z from it. 
By assuming that the beam consists of four sections with different stiffnesses (E = E~ is 
assumed to he small in the first and third sections, and in the second and fourth E = 
Ex/a, a ~ i), we find function u i which approximates deflection u (see Fig. I) in the sec- 
tion with number i: 

Ca 

i ,  i = i , 3 ,  
E1Jxu~(~) = A i [ n i  + Ci~ + / ( ~ ) ] , h ~ =  O, i= 2 ,4 ,  

= z/l, I(g) = l~m~/2  + lag3R/6 - -  14q~4/24, 

D, --- C~ = O, 08 ----/'(A)/a, D 2 = (/(A) - -  ]'(A)h)/o:, 

= - I ' (~ ) ,  D,  = I'(~)~ - I(~), c ,  = [!'(a) + l '"(~)~]/(z, 
D4 = - -~I"(~)A/~ ,  u4(~) = u4"(~ ) = 0 

(Jx is moment of inertia, ~ is the relative length of sections 1 and 3). By letting a and 
A approach zero it is possible to estimate t,. The maximum value of t_ is achieved with 
A/a = 0.257 and it conforms with (17). 

Fig. I 
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Results of Numerical Experiments. Problem I. The limiting value of the load applied 
through a rigid core in the plane of a plate was found (Fig. 2, t o is the upper boundary 
obtained in [6]). 

Solution by the aforementioned procedure was performed by the finite element method 
(triangular elements with linear approximation of displacements was used). Calculations 
showed that after five to six iterations t_ and t+ are almost stabilized, In addition, with 
m = 0 approximate value t, calculated as the mean arithmetic value of t+ and t_ stabilizes 
after the first approximation. For example, the difference between t, = (t+ + t_)/2 in the 
second and ninth steps is 1.9%, and in the eighth and ninth it is -0.08%. The picture indi- 
cating convergence of the method in relation to the number of iterations is given in Fig. 
2. Also given there are results for P0 = 0 which also confirm rapid convergence of the 
method. A feature of this problem is the fact that the lower boundary is obtained quite 
well immediately. 

Comments. Convergence undoubtedly depends on such parameters as Poisson's ratio, the 
maximum achieved value of N = Emax/Emin, and the degree of discretization. 

Numerical experiments showed that first, the results depend little on Poisson's ratio 
and the difference is not more than 0.5%; second, the number q, exists such that for a given 
degree of discretization with ~ > N, calculated results are almost independent of q, for 
example for 420 elements ~, = i00; third, with an insufficient degree of discretization 
the lower boundary may even appear above the upper boundary, which is known from another 
solution, e.g., analytical. This is a consequence of the fact that as a rule numerical 
methods smooth stress peaks, in view of which (I0)ma x obtains a lower true elasticity 

x 

modulus for the distribution adopted. This case occurs with P = 0 and is shown in Fig. 2. 

Problem 2. The supporting capacity of a rectangular hinged plate under a uniform load 
was estimated. Triangular Zenkevich elements were used with cubic approximation of displace- 
ments in a 12 • 12 grid for a quarter of the region. Poisson's ratio was assumed to be 
0.48. 

Rapid stabilization of the mean arithmetic boundary for the limiting load was also 
observed here. Starting from the third iteration results differed from each other by not 
more than 2% and the mean value of limiting load after the fifth iteration with side ratios 
of 1 and 1.5 exceeded the analytical upper boundary by 4% and 3% respectively. 

It is interesting to note that in the course of iteration the surface of a curved plate 
started to take the form of a pyramid which is used with kinematic analysis [7]. The kine- 
matically permissible displacement field for a square plate [7] makes it possible to obtain 
a good estimate from below immediately. 

The procedure suggested has a characteristic that makes it possible by means of well 
developed methods for solving problems of elasticity theory in a small number of iterations 
to approach the upper and lower boundaries of the limiting load. In this way individual 
results in solving the problem by analytical methods are used effectively. 
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